TABLE OF CONTENT

THE INSTABILITY OF ROAD AGAINST TO THE OCCURRENCES OF THE RIVER PATTE
AND ITS CHARACTERISTIC ON SOFT SOIL DEPOSITS
Manarto E. S.
B1

EARTHQUAKE DAMAGE ASSESSMENT FOR RESIDENTIAL PROPERTY LOCATED WITHIN
MASS MovEMENTS AREA. CASE STUDY: PORT HILLS, CHRISTCHURCH, NEW ZEALAND
M.F. Haryono and B. Yeung
B2

CASE STUDY OF REINFORCED ROAD EMBANKMENT OVER A DEEP SOFT SOIL
A. Arsyad, W. Rumid, and A. Yasmin
B3

DESIGN OF THE FOUNDATION FOR SLAB TRACK ON SOFT SOIL
B.C. Benson Hoiung, J.R. Chen, Y.F. Tsai, and C.L. Wang
B4

CASE STUDY AND NUMERICAL MODELING FOR SOIL IMPROVEMENT WITH VACUUM
CONSOLIDATION METHOD
R. Kurniasari, M. Djumardi, and M.R. Fakhrurozy
B5

EVALUATION OF ABUTMENT FAILURE DUE TO EMBANKMENT BACKFILL ON
SOFT SOILS
Aris Hanukoko, Paulaas P. Rahardjo
B6

NUMERICAL STUDIES ON THE CONSOLIDATION BEHAVIOUR OF STONE COLUMN
REINFORCED GROUND
O.S. Mir, S.M. Dasaka and B.V.S. Viswanadh
C1

AN INVESTIGATION ON THE SUITABLE CONSTITUTIVE LAW FOR MODELLING
JAKARTA RED CLAY
Guns Tjie Liong
C2

VERTICAL STRESSES IN STONE COLUMN AND SOFT CLAY DURING ONE-DIMENSIONAL
CONSOLIDATION TEST
Firman Siahwan, Budihono Indrawan, Chokchoot Rajakiankorn, and Sudip Basack
C3

PHYSICAL AND SOFTWARE MODELLING OF PERFORMANCE OF MAT FOUNDATIONS ON
SOFT SOIL
T.N.H. Ivan Ismail, R. Hassamor, R. Gomasan, D.C. Wijeyesekera, J. Bakar, and A. Salamean
C4

THE DEVELOPMENT OF MATHEMATICAL OPTIMIZATION MODEL FOR THE PREDICTION
OF UCS FOR NATURAL SOIL STABILIZED BY POFA-OPC ADDITIVE FOR THE USE IN
PLANTATION ROAD
Yasser M.R. Gumil, Kenas Ahmed Zanokri, and I. Bakar
C5

MODELLING SHRINKAGE BEHAVIOUR OF SOFT SOILS
M. Wijaya, E.C. Leong
C6

CORRELATIONS OF SOIL CLASSIFICATION AND COMPACTION PARAMETERS WITH
SOAKED AND UNSOAKED CBR OF SOILS
S. M. Lint, D.C. Wijeyesekera and I. Bakar
D1

SEISMIC REFRACTION ON PEAT SOILS AT PARIH NIPAH
Mofid Jezlan Madi Sadi, Adnun Zainoebidin, and Dr. Azman Madiun
D2

STUDY OF ENGINEERING CHARACTERISTICS OF JAKARTA CLAY BASED ON
PRESSUREMETER TESTING
Ibrahim Syafr
D3
THE STUDY OF CORRELATION BETWEEN THE PILE CAPACITY AND THE CORRECTED BLOWS FOR DEEP FOUNDATION IN SOFTSOILS
Fandy, Rahardjo P.P.
G4

STUDY ON THE NOISE AND VIBRATION OF TUBULAR PILE INDUCED BY PRESS-IN INSTALLATION METHOD
Iskandar Sufiyi Ibrahim, Nor Azizi Yusoff, and Azranasmarzeizi Ayob
G5

THE USE OF ANISOTROPICALLY CONSOLIDATED TRIAXIAL, DIRECT SIMPLE SHEAR AND CONSTANT RATE OF STRAIN TESTS IN DETERMINING THE STRENGTH PARAMETER OF ORGANIC SOFT SOILS
H. J. Longeek, M. Brancott, A. K. de Jong
H1

OEDOMETER TESTING ON UNDISTURBED AND RECONSTITUTED PEAT
A. Johari N. N., B. Bakar I. and C. Razali S. N. M.
H2

THE SHEAR STRENGTH BEHAVIOR OF JOHORE'S HEMIC PEAT
Siti Hajar binti Mansor and Adnan bin Zainorabidin
H3

CONSOLIDATION ANALYSIS OF SOFT CLAY AT LARGE STRAIN
Yakin, Y. A., Djayaputra, A. A. and Rahardjo, P. P.
H4

CHEMISTRY AND CONSOLIDATION BEHAVIOR OF MEXICO CITY CLAY
A. Ridlo, M. Ohtsubo and M. Tanaka
H5

INFLUENCE OF CYCLIC LOADING TO THE SHEAR STRENGTH OF PEAT SOIL
H.M. Mohonad, A. Zainorabidin, S.N.A Zolkiflee
H6

TEMPERATURE EFFECT TO THE SHRINKAGE CHARACTERISTICS OF PEAT SOIL
Nurshahidah binti Suhein, Adnan bin Zainorabidin, Naurul Farhana bt Mohd Seth
H7

ENGINEERING BEHAVIOUR OF STABILIZED LATERITE AND KAOLIN USING LIGNIN
A.N. Mohd Yusoff, I. Bakar, D.C. Wijeyesekera and A. Zainorabidin
I1

ASSESSMENT OF THE STRENGTH OF CEMENT-STABILIZED PEAT
H. Hashimoto, H. Hayashi, T. Yamashita and S. Nishimoto
I2

OVERVIEW OF PERMEATION GROUTING STUDY OF SOIL
I.Bakar, S.N.M. Razali, A. Zainorabidin and S.N. Johari
I3

IMPROVEMENT OF THE EXPANSIVE SOIL USING COLUMN TECHNIQUE OF CARBIDE LIME AND RICE HUSK ASH MIXTURES
Muttiah A S
I4

CRITICAL STATE OF SAND-BENTONITE MIXTURES
Aminuddin Maro, Choy Soon Tan and Ahmad Mohd Makkhar
I5

FOUNDATION COUNTERFEIT ON VERY SOFT SOIL BY PC GROUTING
Cindarto Lie
I6

BEHAVIOR OF LATERALLY LOADED BORED PILE IN SOFT CLAYS
Amita Theresia and Rahardjo, P.P.
J1

MODELING OF SLOW MAINTAINED PILE LOAD TEST USING FINITE ELEMENT ANALYSIS
A. Ameen Nazrin bin Abd Aziz, B. Nor Azizi Yusoff, C. Sia Chee Kiong, D. Adnan Zainorabidin, E. Agus Salacuman, F. Ayob Ibrahim
J2

PILOT STUDY ON ACCEPTANCE OF SILENT PILING TECHNOLOGY AMONG LECTURER IN UNIVERSITI TUN HUSSEIN ONN MALAYSIA (UTHM)
Nur Abdulaziz Shar, Nor Azizi Yusoff, Suliadi Firdaus Sufian, Azranasmarzeizi Ayob
J3

STUDY ON THE EFFECT OF METHOD OF CONSTRUCTION ON THE STABILITY OF BRIDGE ABUTMENT ON SOFT SOILS
Dian Astrijati
J4
IMPROVEMENT OF EXPANSIVE SUBGRADE USING COLUMN TECHNIQUE OF CARBIDE LIME AND RICE HUSK ASH MIXTURES

Agus Setyo Munthohar

ABSTRACT: Pavement deficiencies on expansive clay have been found as the result of the heave and shrink effect of the expansive soil during seasonal period. This paper paper presents a result of the utilization of carbide lime and rice husk ash mixture for improving performance of expansive soil. The carbide lime and rice husk ash was mixed to form SiCC columns in expansive soil. Application of the SiCC column supported flexible pavement was investigated numerically using finite element method. Two column shapes that are conventional (O-Shape) and enlarged column cap (T-Shape) were investigated in axi-symmetric model. The soil was modeled to have about 5% swelling, while 80 kN standard axle load was applied on pavement surface. The results show that the T-Shaped column can improve the settlement stability of soil between columns remarkably, while narrowing column spacing can reduce the settlement of soil effectively. A columns spacing of 3D to 5D is reasonable to reduce maximum settlement of the pavement due to heave and vehicle load.

Keywords: expansive soil, flexible pavement, SiCC column, finite element, heave.

INTRODUCTION

Expansive soils are the soils which swell significantly when come in contact with water and shrink when the water squeezes out. The severity of damages done by expansive soil has been well documented in literature worldwide (Chen, 1988; Nelson and Miller, 1992; Gourley et al., 1993). Expansive soils are frequently encountered in the Indonesia lowland in areas where favorable environments exist. Munthohar (2006) found the deterioration of a road section at Sta. 8 + 127 of the Purworejo-Wates road which is a national highway at south-path. Pavement deficiency on expansive clay was also found in Cikampek highway (Abadi, 2007). Some traditional methods using lime, fly ash, cement, and any other chemical materials have been introduced to stabilized the expansive soil to enhance the strength and reduce the expansiveness. An innovation method using Cakar Ayam Modifikasi (CAM) has been investigated by Hardiyatmo and Suhendro (2010) as a monolithic continuous reinforced rigid pavement and short pile system on expansive soil.

Lime-column or lime pile and lime/cement column reinforced expansive soil has been studied by Swamy (2000), Tonoz et al., (2003), Munthohar (2003), Rao and Thyagaraj (2003). The technique was adopted from mini pile foundation to control the heave and deformation (Hewayde et al. (2005). The application of the lime-column can be extended to reinforce flexible pavement system on expansive soil. However, use of lime, that produces from calcinations and hydration of calcium carbonate, needs a huge amount of limestone quarry. Excavation the limestone can trigger environment decay. Utilization industrial waste enriched lime e.g. carbide waste is a benefit for environment and construction. Abundant of another solid waste such as rice husk ash, can be mixed with carbide lime to form a cementitious materials. The shear strength properties of the carbide lime and rice husk mixture to improve expansive clay has been studied intensively by Diana et al. (2012) and Munthohar et al. (2014).

Based on the previous results, this paper presents a result of the utilization of carbide lime and rice husk ash mixture for improving performance of expansive soil. The carbide lime and rice husk ash was mixed to form SiCC columns in expansive soil. Application of the SiCC column supported flexible pavement was
investigated numerically using finite element method. The main objective of the study is to investigate the deformation of the SiCC column system reinforced flexible pavement due to heave of expansive soil and to obtain an optimum column size and spacing column to column. The principle of SiCC column supported flexible pavement is illustrated in Figure 1.

NUMERICAL ANALYSIS

Soil Models and Parameters

The behavior of a subgrade reinforced with either a group of SiCC column was investigated in this paper using numerical analyses. The case was analyzed as an axi-symmetric problem using PLAXIS 2D software. The model is shown in Figure 2. Two column shapes that are O-Shape and T-Shape models were investigated in the numerical simulation. The O-Shape column is a circular column with diameter of 0.15 m (Figure 2a). The T-Shape column is a circular column of 0.15 m in diameter (D) and enlarged column cap of 0.3 m in diameter. The length of enlarged column cap is 0.3 m (Figure 2b). The total length of the column was 1 m. The center to center columns spacing was varied into 3D, 5D, 6D, 9D, and 13D.

The expansive clay, the column and pavement materials (subbase, base, and asphalt layer) were modeled using the hardening soil model (HS) in PLAXIS (Schanz et al., 1999). The material properties used in the finite element analyses is presented in Table 1. The pavement subjected to standard axle load 80 kN that is equivalent to 400 kPa pressures at each wheels. The load configuration is shown in Figure 2.

Modeling Soil Heave

Heave of the expansive clay was modeled by applying a volumetric strain to the reactive clay layer. For simplicity, in the analyses presented herein, the 5% volumetric strain was applied uniformly across the full thickness of the clay layer. However in reality, the swelling rate of expansive clay would normally expand depends on the location from the source of moisture and magnitude of overburden pressure. For comparison the heave effect, the pavement model without columns was also simulated in this study. The variation of heave is observed at three locations that are at column tip (A), column cap (B), and pavement surface (C).

RESULTS AND DISCUSSION

In this research the effect of heave is discussed in two conditions (1) without load, and (2) with load. The first condition refers to a condition before opening the traffic, while the last represents a condition with traffic.

Behavior Due To Heave

The behavior of the SiCC column reinforced pavement system due to heave before applying vehicle load (condition 1) is illustrated in Figure 3. In general, the highest heave occur at pavement surface, and decreases with depth. The pavement without columns experiences to have maximum uplift deformation at the edge side. The uplift deformation at centerline of roadway is about 0.11 m to 0.16 m and increases to about 0.12 m to 0.17 m at the edge side of pavement. Installing SiCC columns reduces the heave at subgrade. Reverse arching pattern was observed at subsoil as shown in Figure 3a and 3b. At the columns tip, the heave is greater than the heave without columns support. But, the heave of soil between columns decreases. For this case, the SiCC column was not installed into passive

<table>
<thead>
<tr>
<th>Table 1. Material properties used in the finite element analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>γ_{unsat} (kN/m3)</td>
</tr>
<tr>
<td>γ_{sat} (kN/m3)</td>
</tr>
<tr>
<td>E_{soil}^{ref} (MPa)</td>
</tr>
<tr>
<td>E_{col}^{ref} (MPa)</td>
</tr>
<tr>
<td>E_{sw}^{ref} (MPa)</td>
</tr>
<tr>
<td>ν_{ur}</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>c' (kPa)</td>
</tr>
<tr>
<td>ϕ' (degree)</td>
</tr>
</tbody>
</table>

Note: E_{soil}^{ref} is the deformation modulus at 50% of strength at reference pressure $p^{(ref)}$; E_{col}^{ref} is the unload-reload deformation modulus at reference pressure; E_{sw}^{ref} is the incremental constrained modulus at reference pressure; ν_{ur} is the unload-reload Poisson’s ratio; m defines dependency of stiffness on lateral effective stress.
zone, hence the columns behave as floating pile. As the result, the columns experience to move vertically. However in general, this behavior illustrates that the SiCC columns supported flexible pavement can prevent the soil to experience extreme heave.

As mentioned previously, at the pavement surface, the deformation due to heave increase to the edge side of pavement. The SiCC lime columns reduced the deformation from 0.17 m to 0.15 m at the near edge side (Figure 3c). But, the deformation at the centerline of roadway increase from 0.16 m to 0.165 m. This result indicates that modeling heave effect of columns supported flexible pavement was a complex soil-structure interaction problem. A similar behavior was observed for piled embankment on soft soil as studied in Satibi (2009) and Poulos (2007).

Behavior Due To Heave and Vehicle Load

Figure 4 shows the deformation of SiCC supported flexible pavement due to heave and vehicle load. In general, the pavement goes to settle from the centerline of roadway to a distance of 3 m and the upward deformation was observed at the rest section. Without the SiCC column, the pavement structure experiences an extreme settlement and upward movement under the applied load. Installing the SiCC column can reduce and maintain the settlement of subsoil (Figure 4a and 4b) and pavement surface (Figure 4c). It should be noted that extreme upward deformation at the edge side because of the combination of heave and loading that depends on the soil model and parameter. The higher the soil strength parameters and soil stiffness the lower the
maximum and differential settlement at the subsoil and pavement surface.

Effect of Column Spacing

Figure 5 shows relationship between the spacing and heave of subgrade (location B) and pavement surface (location C) at centerline of roadway. Results show that narrowing column distance can reduce the heave at the pavement (Figure 5a) and subgrade (Figure 5b). It was found that heave reduces as column spacing reduces. Column spacing of 5D is reasonable in terms of heaving control and economic purposes. Narrowing columns distance can reduce the heave of soil effectively. A closer spacing results in arching effect at subgrade. Zhang et al. (2010) mentioned that horizontal displacement on neighboring piles induced the deformation of soil between the piles. In this study, arching heave effect was found when the spacing is smaller than six times of the column diameter (6D) as shown in Figure 4b and 5b.

Figure 6 shows the effect of columns spacing on the settlement of pavement at the centerline of roadway due to heave and vehicle load.
to heave and vehicle load. Increasing column spacing obviously decreases the pavement load transferred to the columns. This leads to the decrease of efficacy and the increase of maximum and differential settlements and soil arching ratio of a column supported flexible pavement. A columns spacing of 3D is reasonable to reduce maximum settlement of the pavement due to heave and vehicle load as shown in Figure 6.

Effect of Enlarged Column Cap

Results in Figure 5 and 6 shows that enlarging the diameter of column cap (T-Shape column) can minimize heaving of expansive soils and improve the settlement stability of soil between columns remarkably. As shown in Figure 6, the settlement at the pavement surface reduces by double for T-Shape column if compare to conventional columns (O-Shape). The T-Shape column reduces significantly the settlement of the pavement due to the applied load. The effect of the enlarged column cap of the SiCC column is similar to the effect of increasing the percentage coverage of pile caps in rigid pile–supported embankments, which can increase pile efficacy and suppress differential settlement of ground surface (Han and Gabr, 2002), Liu et al. (2012). In this study, the column percentage coverage or the column area replacement ratio \(a_c\) of the T-Shape column is double of the O-Shape column.

CONCLUSIONS

The results of a series of axi-symmetric FE analyses to investigate the heave and settlement of flexible pavement supported by SiCC columns over an expansive subsoil have been reported. The analyses demonstrated that the centre-to-centre column spacing (S) is a key parameter to control heave and settlement. Increasing column spacing obviously decreases the pavement load transferred to the columns. This leads to the decrease of efficacy and the increase of maximum and differential settlements and soil arching ratio of a column supported flexible pavement. Enlarged column cap (T-Shape column) reduced significantly the settlement of the pavement due to the applied load. Narrowing columns spacing can reduce the settlement of soil effectively. A columns spacing of 3D to 5D is reasonable to reduce maximum settlement of the pavement due to heave and vehicle load.

ACKNOWLEDGEMENTS

This paper is part of the research project under a scheme of “Penelitian Unggulan Perguruan Tinggi” in 2014. Author thanks to the research fund granted by Ministry of Education and Culture, the Republic of Indonesia.

REFERENCES

14-5

