Proceedings
of
The Seventh Regional Symposium
on Infrastructure Development

held jointly with

Annual Seminar on Urban Water Resource Management
(JSPS Core-to-Core Program)

Bangkok, Thailand
November 5 - 7, 2015

Organized by

Kasetsart University
Tokyo Institute of Technology
The University of Philippines Diliman
STR 14: Influence of Concrete Properties on Reinforcement Corrosion-Induced Cover Cracking Time
W. Yodsudjai, P. Jaroenpong, P. Kaewsrimon, and T. Saothayanun

STR 15: Avoiding Alkali Aggregate Reactions (AAR) in Concrete. Performance Based Testing Concept
B. J. Wigum and J. Lindgård

STR 16: Influence of Some Chemical Compounds of Waste Materials on ASR Expansion of Thai Volcanic Rock
S. Sujiavanich, T. Meesak, K. Won-in, C. Tuakta, P. Kongkachuichay, and P. Chotickai

Session B2: Geotechnical Engineering

Chairperson: Assist. Prof. Dr. Barames Vardhanabhuti

GEO 05: The Effect of Different Vertical Drain Systems for Liquefiable Soil during Shaking
W. Y. Hung and P. D. Tran

GEO 06: Basic Study on Slope Reinforcement Mechanism by Rock Bolt with Facing Plate
S. Nakamoto and J. Takemura

GEO 07: Evaluation of the Compressive Strength of the Clay Soil Reinforced with the Column of Oil Palm Shell Concrete
A. S. Munotobar, Y. Kusumahadi, and R. M. N. Barus

GEO 08: Physical Model Tests on Slope Stabilisation Using Soil Nails with Bearing Plate
S. Tanida and A. Takahashi

Session C1: Transportation Engineering and Construction Management

Chairperson: Assoc. Prof. Dr. Chavalek Vanichavetin

TRP 01: A Numerical Study on the Effect of Variety of User Preference to Ridesharing System’s Performance
P. Thaithakul, T. Seo, T. Kusakabe, and Y. Asakura

TRP 02: Transportation Management for Large-Scale Disasters
A. Strikijpanyachkul

TRP 03: A Framework of Three Parallel Planning Process for Spatial and Infrastructure Plan
T. Yai
STR 20: Effects of High Strain Rate on Low-Cycle Fatigue Behavior of Load-Carrying Cruciform Joint in Large Plastic Strain Region
N. Sinsamutpadung and E. Sasaki

Session B3: Geotechnical Engineering

Chairperson: Dr. Susit Chaiprakaikeow

GEO 09: Improving CBR Value and Swelling Potential of Jamshoro Soil by Cement
A. K. Hindu, G. B. Khaskheli, and R. Korejo

GEO 10: Preliminary Investigation of Heat Exchange Concept for Energy Piles in Soft Bangkok Clay Using a Physical Model
A. Jotisankasa, J. Sittidumrong, P. Duang-in, and W. Wannawilekkit

GEO 11: Prediction of Shallow Slope Failure Using Probabilistic Model: a Case Study of Granitic Fill Slope in Northern Thailand
A. S. Muntohar, A. Jotisankasa, H. J. Liao, and R. M. N. Barnes

GEO 12: Site Specific Probabilistic Seismic Hazard Assessment for Yangon City, Myanmar
Myo Thant, Tun Naing, Hiroshi Kawase, Sabagyo Pramumijoyo, Chit Thet Mon, Thazin Htet Tin, and Khin Kyaw Kyawt Oo

GEO 13: Mitigation of Multi-Hazard in Lower Chao Phya River Basin
S. Soralump

Session C2: Transportation Engineering and Construction Management

Chairperson: Assoc. Prof. Watcharin Witayakul

TRP 06: Severity of Marine Accidents in Thailand
K. Rungjang and P. Pakpoom

TRP 07: Development of Hyperpath-Based Risk-Averse Route Guidance System and Its Verification
D. Fukuda and M. Ito

TRP 08: The Future Prospects of Paratransit Service in Phnom Penh
V. K. Phun, R. Masui, and T. Yai
Predicting of Shallow Slope Failure Using Probabilistic Model: a Case Study of Granitic Fill Slope in Northern Thailand

A.S. Muntohar
Department of Civil Engineering, Universitas Muhammadiyah Yogyakarta, D.I. Yogyakarta, Indonesia. Email: muntohar@umy.ac.id

A. Jotisankasa
Department of Civil Engineering, Kasetsart University, Bangkok, Thailand. E-mail: fengati@ku.ac.th

H.J. Liao
Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan. E-mail: hjliao@mail.ntust.edu.tw

R.M.N. Barus
Department of Civil Engineering, Universitas Muhammadiyah Yogyakarta, D.I. Yogyakarta, Indonesia

Abstract
Slope failure occurred during rainfall in September 2009 near the peak of Doi-Inthanon national Park, Northern Thailand. Progressive studies have been conducted to monitor the pore water pressure variation during the monitored rainfall in September 2011. Lack of data for back analysis generated uncertainties in slope failure analysis. This paper presents probability analysis of the slope failures. The analysis considers the uncertainties of the influencing factor such as rainfall intensity, hydraulic and shear strength parameter of the soil. The probability analysis was calculated using Monte Carlo Simulation method (MCS). The slope failure was modeled using the infinite slope. Infiltration analysis was analyzed using Green – Ampt model. Three models of the rainfall hyetographs, including hourly rainfall, 15 minutes rainfall, and 5 minutes rainfall, were used to analysis the probability of failure. The simulation results show that the probability of failure \(P_f \) ranges about 0.36-0.38 for the corresponding rainfall. The highest probability of failure was obtained when daily rainfall was simulated. The probability of failure was strongly affected by the variability of the input parameter.

Keywords: rainfall, probability, shallow slope failure, factor of safety, residual soil

1. Introduction

This paper presents the extensive field monitoring results of pore-water pressure and rainfall of a granitic soil slope near the peak of Doi-Inthanon national park, Northern Thailand. Jotisankasa et al.[1] did back analysis of the soil slope that failed in 2011. The study was performed to determine the critical pore-water pressure at failure based on laboratory shear strength. The study also involved laboratory determination of the saturated-unsaturated shear strength and Soil-Water Characteristic Curves (SWCC). Although the early study has been successfully estimated the critical pore water pressure at the site, lack of data for back analysis generated uncertainties in slope failure analysis. Hence, continuous research needs to be conducted to determine the triggering rainfall. This paper presents a probability analysis of the slope failures. The analysis considers the uncertainties of the influencing factor such as rainfall intensity, hydraulic and shear strength parameter of the soil. The effect of rainfall intensities and the uncertainty of soil properties on the probability of failure of the slope is the primary objective of this research. In slope - probabilistic analysis, the establishment of the probability distribution of every random variable is a fitting process based on the limited data from measurements or tests. Therefore, there are three major sub-categories introduced: site characterization uncertainty, model uncertainty, and parameter uncertainty [2,3,4].
2. Method of Analysis

2.1. Rainfall Infiltration and Slope Stability Model

Instability of unsaturated soil slopes after rainfall is common in many countries, and these failures are generally shallow and are usually parallel to the slope surface. The stability of these slopes can be analyzed by a simple infinite slope analysis. The model slope stability analysis in combination with infiltration analysis was adopted from the model developed by Muntohar and Ikhsan [5]. The model incorporated one-dimensional infiltration analysis and infinite slope stability analysis. The infiltration analysis was developed from Green – Ampt infiltration model. Time-varying and unsteady rainfall intensity was considered in the model.

The slope stability can be expressed by calculating the factor of safety as written in Equation 1.

\[
FS(t) = \frac{c' + \left[\gamma_i \cdot z_f(t) \cos^2 \alpha - u_w(t) \right] \tan \phi'}{\gamma_i \cdot z_f(t) \cdot \sin \alpha \cdot \cos \alpha}
\]

(1)

Where, \(u_w\) is the pore water pressure, \(\gamma_i\) is saturated unit weight of soil, \(c'\) and \(\phi'\) are cohesion and internal friction angle respectively, \(z_f\) is depth of sliding-plane that is equal to depth of wetting front (\(z_{w*}\)). The depth of wetting front is limited by the depth of impermeable layers or bedrock. In this case, the maximum \(z_{w*}\) is the depth of bedrock \((H_b)\). The pore water pressure is calculated in two condition: \(u_w = \psi_f \gamma_w\), if the ground surface is unsaturated, but if the surface is saturated the pore water pressure \(u_w = z_{w*} \gamma_w\). [5]

2.2. Reliability and failure probability

Reliability is the probability of an object (item or system) performing its required function adequately for a specified period under stated conditions [6]. As it applies in the present context, the reliability of a slope is the probability that the slope will remain stable under specified design conditions. In slope reliability analysis, the performance function \(g(X)\) of slope stability can be stated by a factor of safety equation in equation 1, and is always defined as in equation 2.

\[
g(X,t) = \frac{R(X,t)}{L(X,t)}
\]

(2)

where, \(X = \{x_1, x_n\}\) are \(n\) input uncertain variables which impact the slope reliability. The variables are \(X_i = \{\alpha_i, c_i', \phi_i, \gamma_i, H_{b,i}, k_{s,i}, \psi_{f,i}, \Delta \theta_i\}\). The function \(g(X,t)\) reflects the performance or state of the slope as time dependent function. The slope will be safe when \(g(X,t) > 0\); unsafe or failure when \(g(X,t) < 1\); limit state when \(g(X,t) = 1\), which is also called the limit state function of slopes.

In this study, Monte Carlo Simulation (MCS) method was performed to obtain the failure probability. Values of each uncertain variable are generated randomly as an identically-independent distribution (i.i.d) from the probability distribution function (PDF) for each \(N\) simulation cycles. A lognormal PDF was used in this study. Each set of samples and the resulting outcome from that sample was recorded. In reliability theory, the reliability index \(\beta\) of the slope
stability can be represented by Equation 3 if the probability density function of safety factor is normally distributed.

\[\beta = \frac{\mu_{FS(X,t)} - 1}{\sigma_{FS(X,t)}} \]

(3)

where \(\mu_{FS(X,t)} \) is the mean of the safety factor and \(\sigma_{FS(X,t)} \) is the standard deviation of the safety factor. If the probability density function of safety factor is log-normally distributed, the reliability index of slope can be given as Equation 4 [7].

\[
\beta = \frac{\ln \left(\frac{\mu_{FS(X,t)}}{\mu_{FS(X,t)}} \right) - \ln \left(1 + \left(\frac{\sigma_{FS(X,t)}}{\mu_{FS(X,t)}} \right)^2 \right)}{\sqrt{\ln \left(1 + \left(\frac{\sigma_{FS(X,t)}}{\mu_{FS(X,t)}} \right)^2 \right)}}
\]

(4)

For this reason, the distribution of the factor of safety will be evaluated. Then, the probability of failure can be calculated from the reliability index by Equation 5.

\[P_f = 1 - \Phi(\beta) \]

(5)

where, \(\Phi(\beta) \) is the cumulative probability density function for the given \(\beta \).

2.3. Slope and soil properties

Data input for the slope stability modeling of the studied area has been taken from topographic and geotechnical investigations by Jotisankasa et al. [1]. The data collected was determined as the mean value while the coefficient of variance (\(\text{cov} \)) was assumed to be varied by 0.01, 0.02, and 0.005. The geotechnical properties of the soil are presented in Table 1.

The rainfall was recorded from the nearest rainfall station on 1 - 14 September 2011. Originally, the rainfall record was transmitted as 5 minutes rainfall as shown in Figure 1a. The cumulative rainfall for two weeks was about 520 mm. The other rainfall hyetograph was analyzed for hourly rainfall, and daily rainfall as illustrated in Figure 1b and 1c respectively.

<table>
<thead>
<tr>
<th>Slope angle (\alpha)</th>
<th>Hydraulic conductivity (k_s) (mm/h)</th>
<th>Moisture difference (\Delta \theta = \theta_s - \theta_i)</th>
<th>Wetting front suction head (\psi_f) (mm)</th>
<th>Cohesion (c') (kPa)</th>
<th>Friction angle (\phi')</th>
<th>Soil unit weight (\gamma_i) (kN/m(^3))</th>
<th>Bedrock Depth (H_b) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33(^\circ)</td>
<td>2203.2</td>
<td>0.125</td>
<td>300</td>
<td>10.1</td>
<td>26.7(^\circ)</td>
<td>21.8</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1 Soil properties of the slope

Note: The values are mean values \((\mu) \). The \(\text{cov} \) was varied by 0.01, 0.02, and 0.005. The Wetting front suction head was estimated from soil water retention curve.
Figure 1 The rainfall hyetograph for the study (a) 5 minutes rainfall, (b) hourly rainfall, (c) daily rainfall

Figure 2 Typical the change of factor of safety and the probability distribution of time for the hourly rainfall

3. Results and Discussion

3.1. Probability density and Probability of Failure

The simulation will result in a variation of factor of safety with the elapsed time. Typical the change of factor of safety and the distribution with time is shown in Figure 2. The calculated factor of safety was not normally distributed but lognormal. Hence, the reliability index was determined using equation 4. As a consequence, the probability of failure was calculated based
on the lognormal probability density function. The variation of the probability density and failure probability with the elapsed time of the 5 minutes rainfall, hourly rainfall, and daily rainfall are shown in Figure 3, 4, and 5 respectively. The failure probability of the slope range from 0.05 to 0.37 due to the 5 minutes rainfall pattern, while the probability of slope failure was 0.04 – 0.36 and 0.05 – 0.038 for hourly and daily rainfall pattern respectively. The results show that the maximum failure probability for the given input parameter was about 0.36 – 0.38 due to the rainfall recorded at the site.

Figure 3 Distribution of failure occurrence and failure probability with the time of 5 minutes rainfall

Figure 4 Distribution of failure occurrence and failure probability with the time of hourly rainfall
The relationship in Figure 3 to 5 show that the probability density is widely distributed with the elapsed time if the cov is large. In contrast, the probability density is closely distributed if the cov is small. In this study, the probability density of occurrence is estimated using the normal probability density function. Muntohar [8] proposed the estimated mean time to failure (MTTF) by using the statistical properties of its pdf i.e. mean (μ) and variance (σ²) or standard deviation (σ). The μ value determines the center of the pdf, and the value of σ² determines the width. A small value of the variance implies that the time to failure is closer to the central value or less uncertain. Table 2 presents the MTTF for the simulated rainfall in this study. Based on this presentation, the slope failure can be estimated to be occurred between 9 to 13 September 2011 that depends on the rainfall patterns and variance of the input parameter. The failure probability for that time interval was about 0.38. For a slope failure in which the knowledge in pore water pressure is poor, the uncertainty in pore water pressure may dominate the analysis [9]. The probability density during the rainfall will present the “degree of belief” to estimate the time of slope failure.

![Figure 5 Distribution of failure occurrence and failure probability with the time of daily rainfall](image)

Table 2 The statistical properties of pdf to determine the day of failure

<table>
<thead>
<tr>
<th>Rainfall pattern</th>
<th>cov input parameter</th>
<th>Estimated time of failure (day)</th>
<th>Maximum Probability of failure (Pf)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean, μ</td>
<td>Variance, σ²</td>
</tr>
<tr>
<td>5 minutes</td>
<td>0.02</td>
<td>9.725</td>
<td>7.305</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>11.785</td>
<td>1.007</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>12.659</td>
<td>0.300</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>10.321</td>
<td>5.680</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>12.241</td>
<td>1.148</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>13.217</td>
<td>0.289</td>
</tr>
<tr>
<td>Hourly</td>
<td>0.02</td>
<td>12.043</td>
<td>7.294</td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>13.051</td>
<td>0.871</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>13.582</td>
<td>0.253</td>
</tr>
</tbody>
</table>
3.2 Impact of variability the input variables

The simulation in this study is based on random sampling of the input variables. The effect of variability of the input parameter is evaluated using three different coefficients of variance. A large coefficient of variation indicates that the uncertainty in a variable at failure is substantial in the variation of factor of safety. Hence, the calculated probability of performance function is also a variable. Figure 6 presents the variation of the failure probability with various cov of the input parameter. The relationship shows clearly that the failure probability tends to increase with the increases in cov value of the input parameter. The failure probability is affected by the variability of the input parameter. El-Ramly et al. [10] explained that the variability of input parameter was more contributed by spatial variability of the soils, rather than statistical sources of uncertainty such as sparse data or the use of empirical correlations and factors. While Zhang et al. [9] stated that the factor of safety changed considerably because of the contribution the greatest uncertainty in the probability distribution of the parameter. This condition is valid if the parameters to be updated are not correlated in the prior distribution.

4. Conclusion

Based on this presentation, the slope failure can be estimated to be occurred between 9 to 13 September 2011 that depends on the rainfall patterns and variance of the input parameter. The results show that the maximum failure probability for the given input parameter was about 0.36 – 0.38 due to the rainfall recorded at the site. The failure probability tends to increase with the increases in cov value of the input parameter. The failure probability is affected by the variability of the input parameter. The probability density during the rainfall will present the “degree of belief” to estimate the time of slope failure. The use of a combination of probabilistic and deterministic slope analyses provided a more efficient framework for the investigation and design of remedial measures for the Doi Inthanon park slide in Northern Thailand. However, a probabilistic based back-analyses method need to be developed to obtain an acceptable input parameter at the site.
5. **Acknowledgements**

The first author thanks Ministry of Research, Technology and Higher Education for the research grant in 2015 under the scheme “Penelitian Hibah Kompetensi” based on the contract No. 1314/K5/KM/2015. Support from the Geotechnical Innovation Laboratory (GIL) of Kasetsart University is highly appreciated.

6. **References**

